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1. Abstract

This contribution deals with a spectral domain analy-

sis of planar circuits with a very flexible nonuniform

mesh strategy using different kinds of expansion func-

tions. Accelerating schemes to improve the evaluation

of the spectral domain integrals and special matrix fill

techniques are presented.

2. Introduction

The spectral domain analysis of planar circuits em-

bedded in layered media is a widely used and very ef-

ficient field calculation technique. Until now the me-

thod is mostly restricted to relative simple expansion
functions like symmetrical rooftop or piecewise sinu-

soidal functions on rectangular sub domains with con-

stant current distributions perpendicular to the cur-

rent direction. This may be due to the fact that most

approaches are using FFT-algorithms [1] [2] [3] or itera-

tive techniques [4] [5] in order to diminish the computa-

tional effort. These procedures require the utilization

of uniform meshing strategies with only simple expan-

sion functions for the geometrical discretization. The

uniform meshing technique significantly limits the mo-

delling flexibility of the method and often leads to an

unnecessary large number of expansion functions and

consequently large linear systems of equations.

We present a spectral domain approach which is ba-

sed on expansion functions with asymmetric sinusoi-

dal ramps in current direction and constant as well

as linear distribution perpendicular to the current di-

rection. These expansion functions allow nonuniform
mesh strategies with sub domains of strongly different

sizes, what is necessary for high modelling flexibility y.
For the computation of the spectral domain integrals

we use a very accurate and efficient evaluation me-

thod. The applied convergence acceleration scheme is

based on an analytical treatment of integrals contai-

ning asymptotic representations of the Green functions

similar to [6], extended here to a large class of expan-

sion functions. The remaining integrals cent aining the

surface wave contributions are computed by an optimi-

zed numerical integration scheme in contrast to other

methods based on the deformation of the integration

path [7] or the residue theorem [8]. Furthermore we

present special techniques for detecting identities in

the coupling matrix and special storage strategies to

avoid redundant computations. Numerical results are

presented.

3. Theory

On the planar circuit the electric field has to fulfill the

surface impedance boundary condition :

~(~, Y)ltan = -%(*, Y)7(X, Y) -tE’=Itan (1)

f(z, y) is the surface current density on the circuit,

Zt,t (z, y) is the surface impedance which is zero in the

case of ideal conducting structures. EeX describes the

excitation of the circuit by A-gap sources or impres-

sed current sources. The electric field j(x, y) can be

formulated in the spectral domain using the closed-

form Green function of the layered medium, thus from

Eq.(1) an integral equation can be formulated for the

unknown surface current distribution. The current dis-

tribution is discretized by sub domain expansion func-

tions fi(x, y) with current amplitudes L

i i
(2)

Using the spectral domain representation of the elec-

tric field and applying the Method of Moments the
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integral equation is transformed into a linear system of

equations for the unknown current amplitudes.

N

x IiZji = Uj, j = 1..N (3)

i

with the matrix elements

27T m

ZJi =
//[(

G (~p, 9)- F (~,, 9)) “ m~,! !4]

00
2T

~J*(kp , y)dkPdp +
J

Z~i(P)dP (4)

o

with

(5)

After subtracting the asymptotic representation of the

Green function ~“, the matrix elements can be evalua-

ted very effectively with a numerical integration techni-

que. The term Z~i can be calculated analytically with

respect to the kP-integration.

1’z /’ , fl(x)

a)

b)

c)

Fig. 1: Expansion functions for x-directed currents

In our approach we use expansion functions with piece-

wise asymmetric sinusoidal ramps in current direction

and constant or piecewise linear approximation per-

pendicular to the current direction (see Fig, 1).

The most severe problem in the numerical evaluation

of the coupling integrals (eq. (4)) is the influence of

the surface-wave poles of the Green function (Fig. 2)

leading to strong variations near the poles. In order

to overcome this problem the marked zero position kPt

is searched for each pole by applying of bisection al-

gorithms (Anderson Bjoerg algorithm in this work).

After finding these positions, two small integration in-

tervals are a~ranged symmetrically to each p~sition and

a six point Gaussian quadrature is performed in each

interval. Due to the symmetrical arrangement of the

sample points with respect to the pole position a com-

pensation effect can be utilized. With an adapted den-

sity of sample points in the remainder of the integration

domain, normally less than 100 points are needed for

the numerical integration with respect to kp.

With the help of partial fractions and trigonometric

addition formulas In most of the coupling cases the

asymptotic parts of the coupling integrals eq. (5) can

be traced back to a sum of integrals containing first

order poles or removable singularities with the help of

partial fractions and trigonometric addition formulas.

This kinds of definite integrals can be evaluated analy-

tically. As an example the solution for the asymptotic

parts of two x–directed staircase expansion functions

(Fig. 1, a)) is given:

z;, =

~ G:.]a(P)k(cj,i(2wz -1, 71),(C,,L(27W~))]
Tn=l

(6)

with

b+.~,~azfcos(vk(a.(a:-k;)12(v, a,n) = lim —————

0

1

‘W(bz – k;) )
dkP =

7r
= -((1+ ~)sin(lva/) – 17x21cos(av)),

n =0,2,4... (7)

and

13(?/1,V2) = Jmcos(vlkP) – co@2k&k

k; P

o
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= Jld - 1~11) (8)

The coefficients Cl ,zn, C’j,i(m, n) and a depend on q

and geometrical parameters. Closed form solutions of

eq. (5) for other coupling cases can be evaluated in a

similar manner.
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Fig. 2: Typical behavior of the Green function near a

pole

The functions in Fig. 1.C are especially necessary for

a proper modelling of metallization edges and jumps

of the surface impedance ZtOt (x, y). For this kind and

other classes of expansion functions eq. (5) cannot be

traced back to definite integrals with removable singu-

larities. For these cases a generalized solving procedure

can be formulated. In this procedure sums of indefi-

nite integrals containing nonremovable singularities are

formed. Subsequently closed form solutions can be de-

termined by performing a limit value analysis.

The discretization with nonuniform meshes and the dif-

ferent kinds of expansion functions lead to a great num-

ber of different mutual couplings. Therefore it is crucial

for an efficient matrix fill procedure to detect identical

or only phase shifted matrix elements to avoid red-

undant computations. The developed computer pro-

gram can distinguish up to 40 different cases of such

identities by a tree structure algorithm.

Since the required number of sampling points for the

numerical integration is very low, trigonometric and

exponential terms depending on different lateral di-

stances of expansion functions can be stored for later

applications, what can drastically reduce the compu-

tation time.

4. Applications

In order to illustrate the advantages of the expansion

functions with piecewise linear distributions perpendi-

cular to the current direction, the computation of the

characteristic impedance of a coplanar line with finite

ground is presented.

.93~

K’””
Wg ~w

82.6
4
~

82
. ... . . . ... . . ,,, ,,, ,, ,,, ,,, ,,,... ,,, ,,, Id—

81.6

G + Stall-oaae Approxlmtkm

J 81

0 war ApprfDdmatkm

“2 3 4 5 6 7 8 9

Number of Baski Functions

Fig. 3: Calculation of the characteristic c impedance,

wg=O.5mm, s=d=O.25mm, w= O.125mm, f= 10 GHz

Fig. 4: Current distribution on a microstrip-resonator

with staircase and linear approximation in lateral di-

rection, f= 77 GHz.

Fig. 3 presents the results of both discretization me-

thods depending on the number of expansion functions

on each ground conductor. One can olbserve a much

better convergence behavior (extrapolated value for ZL
approximate 79.35 Q) for the linear approximation as

compared with the staircase approximation.
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Fig. 4 shows the current distribution on a microstrip- [7] Newman, E. H., Scattering from a Microstrip

resonator (w=O .2mm, 1=1. lmm) mounted on a sub- Patch. IEEE Trans. Antennas Prop., AP-35, 1987,

strate of the thickness O. 127mm (6T = 9.9) using a pp. 245-251.

staircase and a linear approximation (b)). In this case

the linear approximation allows a better resolution of
[8] Pozar, D., M., Impedance and Mutual Coupling

the edge-effect.
of Rectangular Microstrip Antennas. IEEE Trans.

At the moment the required computation time for the
Antennas Prop., AP-30, 1983 pp. 1191-1196.

resonator lies in the range of 5 to 13 seconds on a work-

station (IBM RS-6000) if 55 to 66 basis functions are

used. For the computation of a microstrip patch an-

tenna with a proper feed-line, described by ca. 150

basis functions, 20 to 60 seconds are needed.

5. Conclusion

The outlined spectral domain approach achieves an op-

timal adaption of the current description to physical

and geometrical requirements of planar circuits. The

approach presented here guarantees an excellent con-

vergence of the spectral integrals for all kinds of the

presented expansion functions. The computation time

is drastically reduced by optimized matrix fill– and sto-

rage strategies.
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