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1. Abstract

This contribution deals with a spectral domain analy-
sis of planar circuits with a very flexible nonuniform
mesh strategy using different kinds of expansion func-
tions. Accelerating schemes to improve the evaluation
of the spectral domain integrals and special matrix fill
techniques are presented.

2. Introduction

The spectral domain analysis of planar circuits em-
bedded in layered media is a widely used and very ef-
ficient field calculation technique. Until now the me-
thod is mostly restricted to relative simple expansion
functions like symmetrical rooftop or piecewise sinu-
soidal functions on rectangular subdomains with con-
stant current distributions perpendicular to the cur-
rent direction. This may be due to the fact that most
approaches are using FFT-algorithms [1][2][3] or itera-
tive techniques [4][5] in order to diminish the computa-
tional effort. These procedures require the utilization
of uniform meshing strategies with only simple expan-
sion functions for the geometrical discretization. The
uniform meshing technique significantly limits the mo-
delling flexibility of the method and often leads to an
unnecessary large number of expansion functions and
consequently large linear systems of equations.

We present a spectral domain approach which is ba-
sed on expansion functions with asymmetric sinusoi-
dal ramps in current direction and constant as well
as linear distribution perpendicular to the current di-
rection. These expansion functions allow nonuniform
mesh strategies with subdomains of strongly different
sizes, what is necessary for high modelling flexibility.
For the computation of the spectral domain integrals
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we use a very accurate and efficient evaluation me-
thod. The applied convergence acceleration scheme is
based on an analytical treatment of integrals contai-
ning asymptotic representations of the Green functions
similar to [6], extended here to a large class of expan-
sion functions. The remaining integrals containing the
surface wave contributions are computed by an optimi-
zed numerical integration scheme in contrast to other
methods based on the deformation of the integration
path [7] or the residue theorem [8]. Furthermore we
present special techniques for detecting identities in
the coupling matrix and special storage strategies to
avoid redundant computations. Numerical results are
presented.

3. Theory

On the planar circuit the electric field has to fulfill the
surface impedance boundary condition :

E(z, Y)ltan = Zrot(2, ¥)T (2, Y) + E|tan (1)

J (z,y) is the surface current density on the circuit,
Z1ot(x,y) is the surface impedance which is zero in the
case of ideal conducting structures. E*® describes the
excitation of the circuit by A-gap sources or impres-
sed current sources. The electric field E(x,y) can be
formulated in the spectral domain using the closed-
form Green function of the layered medium, thus from
Eq.(1) an integral equation can be formulated for the
unknown surface current distribution. The current dis-
tribution is discretized by subdomain expansion func-
tions ﬁ(x, y) with current amplitudes I;

N N
Te,y) = Y Lifie,u) o—ed (ke ky) = 3 LFi(ks k)
’ @)

Using the spectral domain representation of the elec-
tric field and applying the Method of Moments the
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integral equation is transformed into a linear system of
equations for the unknown current amplitudes.

N
YN Lzi=U;, j=1.N (3)
with the matrix elements
27 oo
Zi = [ [1(6®n0)- G (k09)) - Flkse)]
0 0
2w
Fi (kp, p)dkydp + / Zi(p)de (4)
0
with

75:0) = [ [6 o) Fillns0)] - 5 @by

0

(3)
After subtractingathe asymptotic representation of the
Green function 5 , the matrix elements can be evalua-
ted very effectively with a numerical integration techni-
que. The term Z}; can be calculated analytically with
respect to the k,-integration.
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Fig. 1: Expansion functions for x-directed currents

In our approach we use expansion functions with piece-
wise asymmetric sinusoidal ramps in current direction
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and constant or piecewise linear approximation per-
pendicular to the current direction (see Fig. 1).

The most severe problem in the numerical evaluation
of the coupling integrals (eq. (4)) is the influence of
the surface-wave poles of the Green function (Fig. 2)
leading to strong variations near the poles. In order
to overcome this problem the marked zero position k,:
is searched for each pole by applying of bisection al-
gorithms (Anderson Bjoerg algorithm in this work).
After finding these positions, two small integration in-
tervals are arranged symmetrically to each position and
a six point Gaussian quadrature is performed in each
interval. Due to the symmetrical arrangement of the
sample points with respect to the pole position a com-
pensation effect can be utilized. With an adapted den-
sity of sample points in the remainder of the integration
domain, normally less than 100 points are needed for
the numerical integration with respect to k,.
With the help of partial fractions and trigonometric
addition formulas In most of the coupling cases the
asymptotic parts of the coupling integrals eq. (5) can
be traced back to a sum of integrals containing first
order poles or removable singularities with the help of
partial fractions and trigonometric addition formulas.
This kinds of definite integrals can be evaluated analy-
tically. As an example the solution for the asymptotic
parts of two xz—directed staircase expansion functions
(Fig. 1, a)) is given:
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9 8
V(©) ] Cia| 3 GI4() B(Cyi(m, n), ,0)
n=1 m=1
+G31'Eya(90)12(0j,i(m) n)) a, 2) +
4

Z GTE4 () I5(Cji(2m — 1,n),(C, .(2m, n))}
(6)
with
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The coefficients C1 2, Cj,i(m,n) and a depend on ¢
and geometrical parameters. Closed form solutions of
eq.(5) for other coupling cases can be evaluated in a
similar manner.
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Fig. 2: Typical behavior of the Green function near a
pole

The functions in Fig. l.c are especially necessary for
a proper modelling of metallization edges and jumps
of the surface impedance Z;,:(z,y). For this kind and
other classes of expansion functions eq. (5) cannot be
traced back to definite integrals with removable singu-
larities. For these cases a generalized solving procedure
can be formulated. In this procedure sums of indefi-
nite integrals containing nonremovable singularities are
formed. Subsequently closed form solutions can be de-
termined by performing a limit value analysis.

The discretization with nonuniform meshes and the dif-
ferent, kinds of expansion functions lead to a great num-
ber of different mutual couplings. Therefore it is crucial
for an efficient matrix fill procedure to detect identical
or only phase shifted matrix elements to avoid red-
undant computations. The developped computer pro-
gram can distinguish up to 40 different cases of such
identities by a tree structure algorithm.

Since the required number of sampling points for the
numerical integration is very low, trigonometric and
exponential terms depending on different lateral di-
stances of expansion functions can be stored for later
applications, what can drastically reduce the compu-
tation time.

4. Applications

In order to illustrate the advantages of the expansion
functions with piecewise linear distributions perpendi-
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cular to the current direction, the computation of the
characteristic impedance of a coplanar line with finite
ground is presented.
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Fig. 3: Calculation of the characteristic impedance,
wg=0.5mm, s=d=0.25mm, w=0.125mm, f= 10 GHz

Fig. 4. Current distribution on a microstrip-resonator
with staircase and linear approximation in lateral di-
rection, f= 77 GHz.

Fig. 3 presents the results of both discretization me-
thods depending on the number of expansion functions
on each ground conductor. One can observe a much
better convergence behavior (extrapolated value for Zr
approximate 79.35 Q) for the linear approximation as
compared with the staircase approximation.



Fig. 4 shows the current distribution on a microstrip-
resonator (w=0.2mm, 1=1.1mm) mounted on a sub-
strate of the thickness 0.127mm (¢, = 9.9) using a
staircase and a linear approximation (b)). In this case
the linear approximation allows a better resolution of
the edge-effect.

At the moment the required computation time for the
resonator lies in the range of 5 to 13 seconds on a work-
station (IBM RS-6000) if 55 to 66 basis functions are
used. For the computation of a microstrip patch an-
tenna with a proper feed-line, described by ca. 150
basis functions, 20 to 60 seconds are needed.

5. Conclusion

The outlined spectral domain approach achieves an op-
timal adaption of the current description to physical
and geometrical requirements of planar circuits. The
approach presented here guarantees an excellent con-
vergence of the spectral integrals for all kinds of the
presented expansion functions. The computation time
is drastically reduced by optimized matrix fill- and sto-
rage strategies.
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